
OPENNMS INTEGRATION PATTERNS
Jesse White

ABOUT ME
● Using OpenNMS since 2012

● Participated in Google Summer of Code in 2013

● Joined The OpenNMS Group Inc. in 2014

● Started The OpenNMS Group Canada Inc. in 2017Jesse White
CTO

INTEGRATION PATTERNS
ARCHITECTURE

An architectural overview of the
components we’ll be looking at

1 INVENTORY

Managing elements
4

EVENTS

Sending and receiving events
2 PERFORMANCE DATA

Metrics in and out
5

ALARMS

Reacting to alarms
3 KAFKA

Stream processing
6

Events

Sending and receiving events

IN: Event TCP/UDP Listeners

• Netty based TCP and UDP listeners
• Listeners accept an “event log” in XML format

FACTS

• Available since: 1.0
• Authentication/Authorization: None
• Performance: Single log per socket/message, unlimited

number of events per log, async processing
• Schema: Stable XML XSD

IN: POST events via REST

• Post JSON or XML to /rest/events

FACTS

• Available since: Horizon 17.1.1, Meridian-2016.1.0
• Introduced in: NMS-6404
• Authentication/Authorization: Valid user w/ role
• Performance: Single event per POST, async processing
• Schema: Stable XML XSD

DEMO

Send events via TCP and REST - see https://github.com/j-white/ouce2018-oip

OUT: Trigger scripts with events in scriptd

• Trigger JSR-223 compatible scripts with events
• Supported languages include:

– Beanshell
– Groovy
– Javascript
– Python (Jython)
– Ruby (JRuby)

FACTS

• Available since: 1.0
• Authentication/Authorization: Up to the script
• Performance: Single threaded
• Schema: Stable event bean

DEMO

Perform HTTP post on event via Jython - see https://github.com/j-white/ouce2018-oip

OUT: Events via AMQP

• Forwards events to a AMQP (Advanced Message Queuing
Protocol) compatible broker

• Support for custom processors to mangle events before
forwarding

• Requires AMQP 1-0 which is supported in:
– ActiveMQ
– QPID
– RabbitMQ (w/ plugin)

FACTS

• Available since: 17.1.0
• Introduced in: HZN-537
• Authentication/Authorization: Broker based
• Performance: Good for low/medium volumes of events
• Schema: Stable event bean

DEMO

Pub/sub events with AMQP and RabbitMQ – see https://github.com/j-white/ouce2018-oip

Alarms

Reacting to alarms

IN: Events trigger alarms

OUT: Alarms via Northbounder Interfaces (NBIs)

• Forward alarms via Syslog, SNMP (trap), JMS, AMQP, etc...

FACTS

• Available since: Depends on NBI
• Authentication/Authorization: Depends on NBI
• Performance: Single threaded
• Schema: Stable northbound alarm bean
• Limitations: Not aware of all updates to alarms

DEMO

Trigger syslog messages on alarm - see https://github.com/j-white/ouce2018-oip

Inventory

Managing elements

IN: Inventory via REST

• Manage provisioning requisitions via REST

FACTS

• Available since: 1.8?
• Authentication/Authorization: Valid user w/ role
• Performance: Async handling, needs turning for large env.
• Schema: Stable requisition schema

DEMO

Provision a node using provision.pl – see https://github.com/j-white/ouce2018-oip

OUT: Inventory via REST

• Query nodes via REST
• Flexible criteria support in the v2 API

FACTS

• Available since: 1.8?, v2 API since 21.0.0
• Authentication/Authorization: Valid user w/ role
• Performance: Database bound
• Schema: None

DEMO

Query nodes using the v2 REST API - see https://github.com/j-white/ouce2018-oip

Performance Data

Metrics in and out

IN: Streaming telemetry

• Support for NXOS (Cisco), JTI (Juniper), and sFlow protocols
• Extensible framework for adding new protocols
• Scalable processing added to Horizon 23.0.0 (Sentinel+Newts)

FACTS

• Available since: 21.0.0
• Authentication/Authorization: None
• Performance: Fast!
• Schema: Depends on protocol

DEMO

Stream JTI payloads - see https://github.com/j-white/ouce2018-oip

OUT: TCP exporter

• Send RRD updates over a TCP socket

FACTS

• Available since: 1.7.9
• Authentication/Authorization: None
• Performance: Fast!
• Schema: Protobuf

DEMO

Python TCP listener for performance data – see https://github.com/j-white/ouce2018-oip

A Stream all the data
Consistent interface for events, alarms,
inventory & performance data

B Stable API & Model
Objects are modeled in Protobuf which allows
for compact transmission and allows us to add
fields without breaking existing applications

C Support Many Consumers
Many applications can subscribe to the same
topics

D Scale
Scale up your clusters as needed to support
the required data rates or retention periods

DEMO

Python Kafka Consumer – see https://github.com/j-white/ouce2018-oip

SAY HI
● jesse on chat.opennms.com

● @jesse_white_ on Twitter

● jesse@opennms.ca

	PRESENTATION TITLE
	TITLE_clipboard1
	TITLE
	Slide 4
	Slide 5
	TITLE_clipboard0
	Slide 7
	LONG MULTILINE TITLE THING
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

