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Events

Sending and receiving events



IN: Event TCP/UDP Listeners

• Netty based TCP and UDP listeners
• Listeners accept an “event log” in XML format

FACTS

• Available since: 1.0
• Authentication/Authorization: None
• Performance: Single log per socket/message, unlimited 

number of events per log, async processing
• Schema: Stable XML XSD



IN: POST events via REST

• Post JSON or XML to /rest/events

FACTS

• Available since: Horizon 17.1.1, Meridian-2016.1.0
• Introduced in: NMS-6404
• Authentication/Authorization: Valid user w/ role
• Performance: Single event per POST, async processing
• Schema: Stable XML XSD



DEMO

Send events via TCP and REST - see https://github.com/j-white/ouce2018-oip



OUT: Trigger scripts with events in scriptd

• Trigger JSR-223 compatible scripts with events
• Supported languages include:

– Beanshell
– Groovy
– Javascript
– Python (Jython)
– Ruby (JRuby)

FACTS

• Available since: 1.0
• Authentication/Authorization: Up to the script
• Performance: Single threaded
• Schema: Stable event bean



DEMO

Perform HTTP post on event via Jython - see https://github.com/j-white/ouce2018-oip



OUT: Events via AMQP

• Forwards events to a AMQP (Advanced Message Queuing 
Protocol) compatible broker

• Support for custom processors to mangle events before 
forwarding

• Requires AMQP 1-0 which is supported in:
– ActiveMQ
– QPID
– RabbitMQ (w/ plugin)

FACTS

• Available since: 17.1.0
• Introduced in: HZN-537
• Authentication/Authorization: Broker based
• Performance: Good for low/medium volumes of events
• Schema: Stable event bean



DEMO

Pub/sub events with AMQP and RabbitMQ – see https://github.com/j-white/ouce2018-oip



Alarms

Reacting to alarms



IN: Events trigger alarms



OUT: Alarms via Northbounder Interfaces (NBIs)

• Forward alarms via Syslog, SNMP (trap), JMS, AMQP, etc...

FACTS

• Available since: Depends on NBI
• Authentication/Authorization: Depends on NBI
• Performance: Single threaded
• Schema: Stable northbound alarm bean
• Limitations: Not aware of all updates to alarms



DEMO

Trigger syslog messages on alarm - see https://github.com/j-white/ouce2018-oip



Inventory

Managing elements



IN: Inventory via REST

• Manage provisioning requisitions via REST

FACTS

• Available since: 1.8?
• Authentication/Authorization: Valid user w/ role
• Performance: Async handling, needs turning for large env.
• Schema: Stable requisition schema



DEMO

Provision a node using provision.pl – see https://github.com/j-white/ouce2018-oip



OUT: Inventory via REST

• Query nodes via REST
• Flexible criteria support in the v2 API

FACTS

• Available since: 1.8?, v2 API since 21.0.0
• Authentication/Authorization: Valid user w/ role
• Performance: Database bound
• Schema: None



DEMO

Query nodes using the v2 REST API - see https://github.com/j-white/ouce2018-oip



Performance Data

Metrics in and out



IN: Streaming telemetry

• Support for NXOS (Cisco), JTI (Juniper), and sFlow protocols
• Extensible framework for adding new protocols
• Scalable processing added to Horizon 23.0.0 (Sentinel+Newts)

FACTS

• Available since: 21.0.0
• Authentication/Authorization: None
• Performance: Fast!
• Schema: Depends on protocol



DEMO

Stream JTI payloads - see https://github.com/j-white/ouce2018-oip



OUT: TCP exporter

• Send RRD updates over a TCP socket

FACTS

• Available since: 1.7.9
• Authentication/Authorization: None
• Performance: Fast!
• Schema: Protobuf



DEMO

Python TCP listener for performance data – see https://github.com/j-white/ouce2018-oip





A Stream all the data
Consistent interface for events, alarms, 
inventory & performance data

B Stable API & Model
Objects are modeled in Protobuf which allows 
for compact transmission and allows us to add 
fields without breaking existing applications

C Support Many Consumers
Many applications can subscribe to the same 
topics

D Scale
Scale up your clusters as needed to support 
the required data rates or retention periods



DEMO

Python Kafka Consumer – see https://github.com/j-white/ouce2018-oip



SAY HI
● jesse on chat.opennms.com

● @jesse_white_ on Twitter

● jesse@opennms.ca
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