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The way things were

Once upon a simpler 

time, in Bavaria…

Fork-hoe depiction in Der Rebmann (the vine-dresser). Jost Amman, Das Ständebuch, 1568
Public Domain, https://commons.wikimedia.org/w/index.php?curid=249439



E Events
Originally had the concept of acknowledgment

A Alarms
Lifecycle entities — “events tha tmatter”. Basic 
de-duplication via reduction key.

OpenNMS 1.2 / circa 2006



Limitations of original events / alarms implementation

• External events had to be transported to central OpenNMS listener

• Correlation functionality was limited to a single reduction-key

• Events and alarms were persisted only into relational database (PostgreSQL)

• Automations were limited to SQL-based triggers and actions

• Lack of a supported API for external access to events and alarms

• Event / alarm browsers in OpenNMS web UI frankly pretty bad



The way things are

Every time is simpler 

compared to some 

other time

By Hinrich, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=373633



Improvements to events / alarms implementation

• External events may now arrive via Minion, mitigating complex network topology

• Correlation possibilities opened up via Drools integration

• Events and alarms may be streamed to Elasticsearch for archival

• First-rate REST API provides external access to events and alarms

• Faults data source for Helm / Grafana provides an improved alarm browser



OpenNMS Helm Faults Data Source for Grafana

• Uses alarms REST API

• Provides Alarm Table
panel for Grafana

• Supports alarm actions
– Acknowledge
– Unacknowledge
– Escalate / Clear
– Edit alarm memos
– Custom actions



OpenNMS Helm Alarm Table Custom Actions

• Specify any URL

• Substitute in alarm
parameters to
create a click-across
integration with your
favorite third-party
web thing

• Action appears in
right-click menu of any
alarm having all the
required parameters

https://issues.opennms.org/browse/$parameters[IssueIdentifier]



The challenge

It’s not getting 

simpler any time 

soon

NASA - http://earthobservatory.nasa.gov, Public Domain, https://commons.wikimedia.org/w/index.php?curid=768621



Data volumes are growing

• Event volume in a typical event-focused customer environment is increasing

• The operational OpenNMS RDBMS makes a poor data warehouse

– Systems such as Netcool use an in-memory DB along with “gateways”

– Our architecture does not afford us this luxury

– Keeping too many events creates a drag on OpenNMS performance

• Customers want analysis and auditing of historical events

• How do we handle this need without sacrificing performance?



A real-world example

Overview of a real 

customer 

environment

By Charles O'Rear, 1941-, Photographer (NARA record: 3403717) - U.S. National Archives and Records Administration, Public Domain, 
https://commons.wikimedia.org/w/index.php?curid=17088112



Case study overview — back end

• Customer is a popular provider of in-fight WiFi Internet access

• 100% SNMP trap-driven management workfow

• Every fight is book-ended with “hello” / “goodbye” traps

• In between, we get periodic “heartbeat” traps and other kinds of traps

• Legacy event management platform is Netcool
– Single mttrapd probe in terrestrial collocation facility
– Single ObjectServer in same facility
– Netcool Impact rules approximate a state machine using these traps
– A “dark fight” is bad news for revenue. Priority #1 is to recognize these.

• All software that fies is subject to extremely strict change controls from civil 
aviation authorities (chiefy FAA)



Case study overview — front end

• Shift operators require a familiar event management UI like Netcool’s AEL

• Shift managers need ability to audit history of each alarm

• Internal customers must be able to report on months of historical events



Case study overview — technical constraints

• Customer faced an enterprise-wide mandate to migrate IT to AWS
– Also a rigid mandate on choice of DevOps pipeline
– The chosen pipeline was a poor fit for OpenNMS

● And virtually impossible to duplicate in a lab

• Airborne systems send their traps to a hard-coded IPv4 address
– Changing this would take months and cost multiple 100K USD
– Hits mttrapd ProbeServer via a physical load balancer

• No ground-to-air IP traffic is allowed



How to eat a ton of grain

Decomposing the 

problem

By Fairv8 - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=11794724



Decomposing the problem: deployment

• Minion on VMware VM; Balance via pipeline  EC2, RDS, SQS→
– Mind the configuration file mutability



Decomposing the problem: trap intake and correlation

• Eventconf XML gets us a long way down the road

• Drools and a third-party incumbent platform close the gap



Decomposing the problem: event archival to Elasticsearch

• Customer using Elastic.co AWS-hosted cluster

• Aggressive event cleanup in DB (TTL measured in hours)



Decomposing the problem: alarm visualization for operators

• Grafana Helm Faults data source plugin



Decomposing the problem: alarm reporting & analysis

• Grafana Elasticsearch  data source plugin

• Kibana



Integrating the pieces

Making it all work 

together

By Fairv8 - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=11794724



Case study overview — diagram
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Helm
● Helm 2.0
● Grafana 5.x

OpenNMS
● Horizon ≥ 21
● Meridian ≥ 2017

Elasticsearch
● ≥ 5.x

Stack component version requirements



Pitfalls

Lessons learned from 

actually felding the 

solution

By Huhu Uet – Own Work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=9411845



Pitfalls

• Alarm change notifier plugin problematic with high event volumes

• Uninstalling this plugin is tricky once it has become a problem

• Back-pressure from Elasticsearch on Eventd via Alarmd can cause bottlenecks
– Alarmd is now multithreaded as a result of experience from the case study
– Under-sizing your Elasticsearch cluster worsens the problem

• Under-sizing the RDBMS (PostgreSQL or RDS Aurora) is very bad for performance



Version notes

Details vary

By LameiroOriginal uploader was Lameiro at gl.wikipedia - Transferred from gl.wikipedia(Original text : self made), Public Domain, 
https://commons.wikimedia.org/w/index.php?curid=5586217



Version notes

• Horizon 22 reworks Elasticsearch event / alarm forwarding. See admin guide.

• For events and alarms alone, Elasticsearch 5 is fine.

• For fows, Elasticsearch 6 is required, so go straight for that if you can.

• Helm 2.0 requires Grafana 5.0.



Conclusion

By Batternut - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=40563984



Q&A

By Benutzer:Weneg - Eigene Dateien, CC BY-SA 3.0 de, https://commons.wikimedia.org/w/index.php?curid=7284813


