
The HOE Stack:

OpenNMS + Helm + Elasticsearch

Jeff Gehlbach
OpenNMS User Conference Europe
21 Sep 2018 · Munich

Jef Gehlbach

Director of Applied Innovation at The OpenNMS Group

Spelling SNMP since 2000.
Contributing to OpenNMS since 2005.
Working for The OpenNMS Group since 2007.

Agenda

The way things were

A bit of background regarding
event-heavy use cases and
OpenNMS

1 Integrating the pieces

Making it all work together
6

The way things are

Why we can’t just go back
2 Pitfalls

Lessons learned from actually
fielding the solution

7

The challenge

What is the problem that needs
solving, anyway?

3 Version notes

Details vary
8

A real-world example

Overview of a real customer
environment

4 Conclusion

Wherein I conclude
9

How to eat a tonne of
grain

Decomposing the problem

5 Q&A

Wherein you say things and I say
other things

10

The way things were

Once upon a simpler

time, in Bavaria…

Fork-hoe depiction in Der Rebmann (the vine-dresser). Jost Amman, Das Ständebuch, 1568
Public Domain, https://commons.wikimedia.org/w/index.php?curid=249439

E Events
Originally had the concept of acknowledgment

A Alarms
Lifecycle entities — “events tha tmatter”. Basic
de-duplication via reduction key.

OpenNMS 1.2 / circa 2006

Limitations of original events / alarms implementation

• External events had to be transported to central OpenNMS listener

• Correlation functionality was limited to a single reduction-key

• Events and alarms were persisted only into relational database (PostgreSQL)

• Automations were limited to SQL-based triggers and actions

• Lack of a supported API for external access to events and alarms

• Event / alarm browsers in OpenNMS web UI frankly pretty bad

The way things are

Every time is simpler

compared to some

other time

By Hinrich, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=373633

Improvements to events / alarms implementation

• External events may now arrive via Minion, mitigating complex network topology

• Correlation possibilities opened up via Drools integration

• Events and alarms may be streamed to Elasticsearch for archival

• First-rate REST API provides external access to events and alarms

• Faults data source for Helm / Grafana provides an improved alarm browser

OpenNMS Helm Faults Data Source for Grafana

• Uses alarms REST API

• Provides Alarm Table
panel for Grafana

• Supports alarm actions
– Acknowledge
– Unacknowledge
– Escalate / Clear
– Edit alarm memos
– Custom actions

OpenNMS Helm Alarm Table Custom Actions

• Specify any URL

• Substitute in alarm
parameters to
create a click-across
integration with your
favorite third-party
web thing

• Action appears in
right-click menu of any
alarm having all the
required parameters

https://issues.opennms.org/browse/$parameters[IssueIdentifier]

The challenge

It’s not getting

simpler any time

soon

NASA - http://earthobservatory.nasa.gov, Public Domain, https://commons.wikimedia.org/w/index.php?curid=768621

Data volumes are growing

• Event volume in a typical event-focused customer environment is increasing

• The operational OpenNMS RDBMS makes a poor data warehouse

– Systems such as Netcool use an in-memory DB along with “gateways”

– Our architecture does not afford us this luxury

– Keeping too many events creates a drag on OpenNMS performance

• Customers want analysis and auditing of historical events

• How do we handle this need without sacrificing performance?

A real-world example

Overview of a real

customer

environment

By Charles O'Rear, 1941-, Photographer (NARA record: 3403717) - U.S. National Archives and Records Administration, Public Domain,
https://commons.wikimedia.org/w/index.php?curid=17088112

Case study overview — back end

• Customer is a popular provider of in-fight WiFi Internet access

• 100% SNMP trap-driven management workfow

• Every fight is book-ended with “hello” / “goodbye” traps

• In between, we get periodic “heartbeat” traps and other kinds of traps

• Legacy event management platform is Netcool
– Single mttrapd probe in terrestrial collocation facility
– Single ObjectServer in same facility
– Netcool Impact rules approximate a state machine using these traps
– A “dark fight” is bad news for revenue. Priority #1 is to recognize these.

• All software that fies is subject to extremely strict change controls from civil
aviation authorities (chiefy FAA)

Case study overview — front end

• Shift operators require a familiar event management UI like Netcool’s AEL

• Shift managers need ability to audit history of each alarm

• Internal customers must be able to report on months of historical events

Case study overview — technical constraints

• Customer faced an enterprise-wide mandate to migrate IT to AWS
– Also a rigid mandate on choice of DevOps pipeline
– The chosen pipeline was a poor fit for OpenNMS

● And virtually impossible to duplicate in a lab

• Airborne systems send their traps to a hard-coded IPv4 address
– Changing this would take months and cost multiple 100K USD
– Hits mttrapd ProbeServer via a physical load balancer

• No ground-to-air IP traffic is allowed

How to eat a ton of grain

Decomposing the

problem

By Fairv8 - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=11794724

Decomposing the problem: deployment

• Minion on VMware VM; Balance via pipeline EC2, RDS, SQS→
– Mind the configuration file mutability

Decomposing the problem: trap intake and correlation

• Eventconf XML gets us a long way down the road

• Drools and a third-party incumbent platform close the gap

Decomposing the problem: event archival to Elasticsearch

• Customer using Elastic.co AWS-hosted cluster

• Aggressive event cleanup in DB (TTL measured in hours)

Decomposing the problem: alarm visualization for operators

• Grafana Helm Faults data source plugin

Decomposing the problem: alarm reporting & analysis

• Grafana Elasticsearch data source plugin

• Kibana

Integrating the pieces

Making it all work

together

By Fairv8 - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=11794724

Case study overview — diagram

Collocation Facility

Load Balancer

SN
M

P Traps

SN
M

P Traps

Minion Minion

AWS

SQS

OpenNMS
(EC2)

RDS
Aurora

Elasticsearch

Helm / Grafana

Events / Alarms

Helm
● Helm 2.0
● Grafana 5.x

OpenNMS
● Horizon ≥ 21
● Meridian ≥ 2017

Elasticsearch
● ≥ 5.x

Stack component version requirements

Pitfalls

Lessons learned from

actually felding the

solution

By Huhu Uet – Own Work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=9411845

Pitfalls

• Alarm change notifier plugin problematic with high event volumes

• Uninstalling this plugin is tricky once it has become a problem

• Back-pressure from Elasticsearch on Eventd via Alarmd can cause bottlenecks
– Alarmd is now multithreaded as a result of experience from the case study
– Under-sizing your Elasticsearch cluster worsens the problem

• Under-sizing the RDBMS (PostgreSQL or RDS Aurora) is very bad for performance

Version notes

Details vary

By LameiroOriginal uploader was Lameiro at gl.wikipedia - Transferred from gl.wikipedia(Original text : self made), Public Domain,
https://commons.wikimedia.org/w/index.php?curid=5586217

Version notes

• Horizon 22 reworks Elasticsearch event / alarm forwarding. See admin guide.

• For events and alarms alone, Elasticsearch 5 is fine.

• For fows, Elasticsearch 6 is required, so go straight for that if you can.

• Helm 2.0 requires Grafana 5.0.

Conclusion

By Batternut - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=40563984

Q&A

By Benutzer:Weneg - Eigene Dateien, CC BY-SA 3.0 de, https://commons.wikimedia.org/w/index.php?curid=7284813

